
Impact of Inflammation on Responses 
to Vaccination in the Elderly
Master de Sciences, Technologies, Santé, Mention Biologie Moléculaire et Cellulaire
Parcours Leading International Vaccinology Education (LIVE)

Erasmus + Mundus Joint Master Degrees LIVE

Master Thesis By: Nicolás Gutiérrez Melo, Master 2, UJM

Internship Institution: Centre d’immunologie et des maladies infectieuses Cimi-Paris.
UPMC UMRS CR7 - Inserm U1135 - CNRS ERL 8255

Internship Supervisor: Dr. Delphine Sauce. Sorbonne Université. CIMI Paris Inserm U1135

Academic Supervisor: Dr. Stéphane Paul. Université Jean Monnet. GIMAP - EA3064

Academic year: 2020-2021



Acknowledgments 
 
 
First and foremost, I am very grateful to my supervisor Dr. Delphine Sauce for her advice, her 
support, and mainly for giving me the opportunity to learn and explore beyond my thesis. My 
gratitude extends to Dr. Martin Larsen for his guidance and help with the statistical and 
computational work. I would also like to thank the members of the lab, Dr. Chrystel Marton, 
Dr. Alix Minaud, Laëtitia Lacroix, Eoghan White, and Dr. Hélène Lepeticorps; for their 
company and help. A special thanks to Manon Chauvin whose support, patience, and friendship 
made my days in the lab such a great experience. 
 
This thesis and the journey that preceded it would not have been possible without the 
unconditional love and support from my family for which I will be always grateful. I would 
also like to thank Slavek Roller for always reminding me what science should be about, as well 
as for the many discussions about immunosenescence and the ethics of ageing. My gratitude to 
Diego Pérez for his help with the design; and to Daniel Hernández and Matthias Soubise for 
always being a second home. 
 
To my friends Sara van Looy, Júlia Moraes, Margot van Elsen, and Vinicius Alves, a special 
thanks for having shared all the ups and downs of this journey with me.   
 
Finally, I would like to thank the LIVE master’s coordinators Dr. Stéphane Paul, Dr. Dolores 
Jaraquemana, Dr. Christine Delprat, Dr. Peter Delputte, and Dr. Thomas Stratmann for having 
made this master’s possible. 
 
 
  



 
Summary 

 
 
Vaccine development for the elderly has proven to be a challenge given the diminished and 
highly heterogenous immune response observed in this population. This hyporesponsiveness 
results from a series of changes that occur to the ageing immune system, among which 
inflammaging has been shown to be particularly detrimental. To gain further insight on how 
this chronic inflammation affects the response to immunization, 25 inflammatory-related 
biomarkers were measured in serum from 316 subjects of different ages from the VITAL 
cohort. Concentration changes of each biomarker were found to follow one of three trajectories 
describing how inflammation increases according to age. Some biomarkers such as IL-1Ra, 
neopterin, YKL-40, and IL-6, which were shown to moderately correlate with age, and were 
also found to contribute the most at explaining the variability in the data. Using these 25 
biomarkers, two machine learning models to predict vaccine responsiveness were developed. 
The prediction accuracy rate was higher for the support vector machine-based model (73%) 
compared to that of the lasso logistic regression (67%). Although these models require further 
validation, this proof-of-concept shows that inflammation biomarkers at baseline are indeed 
able to predict the quality of the immune response. Finally, a spectral cytometry panel is 
developed that allows for the characterization of multiple immune parameters on T cells in-
vitro. This panel is expected to be used in the future to study the differences on the immune 
response to the SARS-CoV-2 vaccine between adult and elderly subjects in the VITAL cohort.  



Table of Contents 
List of Abbreviations ............................................................................................................... 5 
1. Introduction: ........................................................................................................................ 6 

1.1 Characteristics of the ageing immune system .............................................................................. 7 
1.1.1 T lymphocytes ....................................................................................................................................... 7 
1.1.2 B Lymphocytes ..................................................................................................................................... 8 
1.1.3 Monocytes ............................................................................................................................................. 8 
1.1.4 Neutrophils ............................................................................................................................................ 9 
1.1.5 Dendritic cells ....................................................................................................................................... 9 
1.1.6 NK cells ............................................................................................................................................... 10 

1.2 Inflammaging .............................................................................................................................. 10 
1.3 Immunosenescence beyond the immune system .......................................................................... 11 
1.4 Systems immunology: the new horizon ....................................................................................... 13 

2. Aim of the study ................................................................................................................. 16 
3. Materials and Methods ...................................................................................................... 16 

3.1 Clinical study and sampling protocol ..................................................................................................... 16 
3.2 Measurement of inflammation biomarkers ............................................................................................ 17 
3.3 Statistical analysis and prediction models .............................................................................................. 17 
3.4 Spectral cytometry .................................................................................................................................. 18 

4. Results ................................................................................................................................. 19 
4.1 VITAL cohort characteristics ................................................................................................................. 19 
4.2 The specific increase of different inflammatory biomarkers with age is described by three distinct 
trajectories. ................................................................................................................................................... 20 
4.3 Inflammation positively correlates with age but is not enough to discriminate between age groups. ... 20 
4.4 SVM outperforms Lasso logistic regression at predicting vaccine responsiveness ............................... 21 
4.5 Spectral cytometry as a potential tool to assess vaccine responsiveness to the SARS-CoV-2 vaccine. 22 

5. Discussion: .......................................................................................................................... 24 
6. Future perspectives: ........................................................................................................... 28 
7. References: .......................................................................................................................... 30 
8. Supplementary Material ................................................................................................... 34 
 
 
  



 

List of Abbreviations 
 
 

AID 

APC 
Angpt-2 

BMI 
ConA 
CMV 
CRP 

DAMP 
ERK 
HAI 
HLA 

iFABP2 
IFN- γ 

IMP 
LAIV 
MHC 
NET 
NGS 

PBMC 
PR3 

PTX3 
QIV 
ROS 
SASP 
SEB 
SVM 
TCR 
TIV 
TLR 

TNF-a 

YKL-40 

Activation-induced cytidine deaminase 

Antigen presenting cell 

Angiopoietin 2 

Body mass index 

Concanavalin A 

Cytomegalovirus 

C reactive protein 

Damage-associated molecular patterns 

Extracellular signal-regulated kinase 

Haemagglutination inhibition 

Human leukocyte antigen 

Intestinal fatty acid binding protein 2 

Interferon-γ 

Immunosenescence phenotype 

Live attenuated Influenza vaccine 

Major histocompatibility complex 

Neutrophil extracellular trap 

Next generation sequencing 

Peripheral blood mononuclear cell 

Proteinase 3 

Pentraxin-related protein 

Quadrivalent inactivated Influenza vaccine 

Reactive oxygen species 

Senescent-associated secretory phenotype 

Streptococcus enterotoxin B 

Support vector machine 

T cell receptor 

Trivalent inactivated Influenza vaccine 

Toll-like receptor 

Tumour necrosis factor - a 

Chitinase-3-like protein 1 

 
 

  



1. Introduction: 
 
 In the last hundred years the life expectancy at birth around the world has significantly 
increased to the current global average of 70 years. This trend has contributed to the increase 
in the number of people 60 years or older which has more than doubled since 1980, and which 
it is estimated to reach 2.1 billion people by 2050 (United Nations. Department of Economic 
and Social Affairs, 2017). Unfortunately, the healthy life expectancy has not grown at the same 
pace, meaning that the gap in years spent in ill-health has been slowly increasing despite our 
progress in the medical sciences. (World Health Organization, 2020). Interest for different 
interventions targeting the health needs of the elderly population has therefore been growing 
in the last decade. Among them, significant progress has been achieved in the field of 
vaccination, where new formulations, adjuvants, and technologies have been developed to 
address diseases such as influenza, pneumococcal disease, and shingles; diseases which 
disproportionally affect this segment of the population (Pinti et al., 2016). 
 
 Despite these advances, developing vaccines for the elderly has proven to be challenging given 
the diminished and heterogenous response that is observed in this population (Fulop et al., 
2020). This hyporesponsiveness is in great part the result of a series of changes in the immune 
system associated with ageing, a phenomenon known as immunosenescence. The present 
literature revision aims at reviewing what are some of the most significant changes of the 
ageing immune system, and how, in the past decade, the systems biology and machine learning 
approaches have been used to gain a better insight of the immunosenescence process and its 
relation to vaccine responsiveness.  
 
 Although research on the relation between ageing and the changes in the immune system was 
already taking place in the 1960’s, the  term “immunosenescence”  was not properly introduced 
in the literature until the late 1970’s by Takashi Makinodan to refer to the predisposition to 
disease that resulted from the decline of the immune functions with age (1977). Nonetheless, 
as pointed out by Pawelec (2017), immunosenescence as a term remains loosely defined, and 
this has led to some overlap with other concepts such as replicative senescence. He suggests 
immunosenescence to be defined as a state of “robust measures of immune parameters 
(biomarkers) that are different in younger and older individuals and which have been 
associated with a clearly detrimental clinical outcome.” This interpretation is probably the 
most frequently used by the immunologists in the field, and it emphasises one aspect that has 
been particularly controversial. Wanting to restrict immunosenescence to those changes 
causing detrimental clinical outcomes only, arises from some critiques that have accused the 
field to have an ageist bias (Fulop et al., 2020; Pawelec, 2018; Pawelec et al., 2020). For 
instance, special attention has been given to changes in the repertoire, which are generally 
considered as detrimental to the quality of the adaptive immune response, but which has also 
been argued to be consistent with an evolutionary adaptation that aims at conferring greater 
protection against the local dangers (Fulop et al., 2020). In fact, recent evidence also suggests 
that preferential proliferation of CD8+ T cells in humans is a mechanisms to preserve naïve T 
cells for when most needed (Mayya et al., 2019). Other examples include the increased 
immunosuppression seen in the elderly, either by an increases number of Tregs, or by a higher 
expression of immunomodulatory molecules such as PD-1. While these changes in an adult 
individual might point at a hampered immune response, in the elderly these mechanisms are 
probably adaptations that regulate inflammaging (Fulop et al., 2020), a low-grade chronic 
inflammation state that will be discussed latter. Ultimately, when interpreting data on the age-
associated immune changes and their effects, it is important to keep in mind these changes are 



not implicitly unfavourable, with some of them potentially being adaptations to an overall 
changing individual. 
 
1.1 Characteristics of the ageing immune system 
 
One of the main challenges in studying immunosenescence is the fact that it results from several 
immune changes that influence one another. To facilitate their study, these changes can be 
grouped six major processes which describe the hallmark features of the immunosenescence 
phenomenon (Figure 1). These hallmarks are: inflammaging, memory inflation, defective cell 
migration, myeloid-biased haematopoiesis, hampered affinity maturation, and accumulation of 
senescent lymphocytes. However, each of these six also results from a series of discreet 
changes that occur to individual immune cell subsets as follows: 
 

 
 
1.1.1 T lymphocytes 

 
 One of the most noticeable changes with aging is the accumulation of senescent T cells, 
characterised by a lost or decreased CD28 and high CD27 expression, short telomers, and lost 
telomerase activity. As a result, these cells have a reduced response upon stimuli  (Bajaj et al., 
2021). Increased levels of TNF-a have been demonstrated to play a role in the downregulation 
of CD28 expression in experienced CD4+ T cells (Cianci et al., 2020), while altered TCR 
signalling and ERK phosphorylation have been shown to cause blunted lymphocyte activation 



(Pinti et al., 2016). Paradoxically, aged CD4+ TEM cells present a reduced cytokine production 
upon stimuli, while terminally differentiated ones show a higher unspecific cytokine activity 
that contributes to the overall inflammation seen in the elderly (Cianci et al., 2020). Moreover, 
decreased trafficking and reduced motility have been also shown for T cells in the lymph node 
(Pinti et al., 2016). 
 
 As previously discussed, there is a significant oligoclonal expansion of the CD8+ cell repertoire 
associated with ageing, particularly against CMV epitopes (Cianci et al., 2020). The resulting 
loss of naïve T cell diversity contributes to poorer response to vaccination. Additionally,  this 
phenomenon is not only specific to CD8+ T cells, as it has been shown that a reduced number 
of naïve CD4+ recent thymic emigrants strongly correlates with a diminished response to 
yellow fever vaccination in older individuals (Schulz et al., 2015).  
   

1.1.2 B Lymphocytes 
 
 Although the total number of B cells seems to remain constant with age (Frasca et al., 2017), 
the proportion of the different subpopulations undergo significant changes.  The most 
compelling is the decreased number of plasma cells (Bajaj et al., 2021); even if increased 
circulating low-affinity immunoglobulin has also been described. This phenomenon is caused 
by a reduced turnover and the accumulation of aged B cells, leading to a loss of repertoire that 
correlates with poor health (Frasca and Blomberg, 2020). One of the mechanisms behind this 
loss of repertoire is the downregulation of the E47 transcription factor, which in turn 
dysregulates the expression of AID, therefore impairing somatic hypermutation. These aged B 
cells are characterised by a reduced ability to recognize and respond to neo-antigens, a reduced 
capacity to differentiate into plasma cells, and therefore they secrete less antibodies (Frasca 
and Blomberg, 2020). Interestingly, despite all these changes in B cells with age that negatively 
impact the response to vaccination, a study from Ju et al. (2018) found that although the 
antibodies produced by the elderly upon influenza vaccination are less diverse, they have 
shown to have a higher breadth of binding to HA epitopes than those produced by young 
individuals. This suggests that, at least in the case of influenza, the humoral response in the 
elderly seems to rely more on cross-protective B cells. This finding highlights the need to take 
into account these differences in the immune response when designing vaccines for the elderly 
as they may differ from those in younger individuals. 
 
 In addition to changes in their inherent function, memory B cells in elderly individuals acquire 
a senescent-associated secretory phenotype. These population of double negative B cells 
(CD19+CD27-IgD-) significantly expands, and it is characterised by a spontaneous secretion of 
TNF-a (Frasca and Blomberg, 2020). The pro-inflammatory microenvironment that results 
from this secretion has been proven to be particularly detrimental for vaccine responsiveness, 
given that it makes these exhausted B cells refractory to further stimuli (Frasca et al., 2017).  
 

1.1.3 Monocytes 
 
 The immune changes in the elderly are not restricted to the adaptive immune system, but also 
have a significant impact on the different subsets that compose the innate response. In turn, this 
affects the capacity of elderly individuals to control infections and to respond to immunization. 
In contrast to the decreased numbers of many lymphocytic populations, the number of some 
innate immune subsets increases or remains stable due to a myeloid-derived replication bias of 
the aging haematopoietic stem cells (Goronzy and Weyand, 2013). Interpretation of these 
changes, however, must be done carefully as to avoid misinterpretation. For instance, Nakaya 



et al. affirmed that monocytes were increased in the elderly, and found a negative relation 
between monocytic expression at day 0 post vaccination and the antibody response to it (2015). 
This seems to contradict others like Hearps et al. (2012)  who argue that the total number of 
monocytes do no experience a dramatic change with age, but is rather the proportion of the 
three subpopulations, conventional, non-conventional, and intermediate; which is altered.  
Functionally, monocytes and macrophages undergo severe modifications. For example, 
expression of HLA and MHC-II molecules is reduced, affecting their capacity to behave as 
APCs. Moreover, altered responses to TLR stimulation have been shown to induce higher 
levels of some cytokines like IL-8 (Pinti et al., 2016), while decreasing levels of others such as 
IL-6 and TNF-a (Bailey et al., 2019). Also, reduction of phagocytosis, ROS production, and  
hampered response to IFN-γ have been widely documented (Cianci et al., 2020). The overall 
dysregulation and the accumulation of immune complexes, hormones, free fatty acids, and 
lipoproteins, induce a generalized pro-inflammatory activation of the different monocytic 
populations. This is only aggravated by defects in macro-autophagy, causing an unhealthy 
accumulation of macrophages in tissue (Bajaj et al., 2021).  
 

1.1.4 Neutrophils 
 
Phagocytosis is also affected in neutrophils, and this is both due to a reduced CD16 expression 
(Cianci et al., 2020), as well as a defective production of ROS (Sauce et al., 2017). Although 
these changes greatly affect the uptake of opsonized particles, evidence seems to suggest that 
ingestion of non-opsonized particles remains unaltered (Pinti et al., 2016). Aged neutrophils 
are also characterized by their inaccurate migration, causing a spread inflammatory response 
that reaches further from the site of infection. This defect has been proven to be caused by the 
constitutive activation of the PI3K signalling pathway, and the dysregulation of CXCR4 and 
CD62L, which in turn affect neutrophil egress, leading to cell accumulation after immune 
clearance (Pinti et al., 2016). Dysregulation of CD62L and CD11b also correlates with the 
levels of IL-6, and  the response from aged neutrophils to suboptimal stimuli with this cytokine 
suggests they are pre-activated by it (Sauce et al., 2017). Finally, reduced ability to produce 
NETs, and to clear methicillin-resistant Staphylococcus aureus infection have been 
documented in a skin infection model on aged mice (Tseng et al., 2012).  
 

1.1.5 Dendritic cells 
 
There is no consensus in the field about the age-related changes in the abundance and 
proportion of different dendritic cell (DCs) subsets except for Langerhans cells which in elderly 
individuals are diminished, and that poorly migrate in response to TNF-a (Pinti et al., 2016). 
Still, both pDCs and mDCs have been shown to present a reduced antigen presentation activity, 
and a deficient stimulation to CD4+ and CD8+ T cells (Cianci et al., 2020). Functionally, pDCs 
in the elderly have been found to produce less cytokines such as IL-12, IL-6, and the three 
families of interferon molecules (Pinti et al., 2016). Although these defects have been 
associated with reduced response to the influenza vaccine, Fulop et al. argue that poor 
responsiveness to immunization depends on the overall innate stimulation rather than on a 
single subset (2018). Follicular DCs have a reduced expression of the FcγRII receptor which 
in turn leads to a defective formation of the germinal centres, consequently having a negative 
impact on the humoral response upon vaccination (Cianci et al., 2020). 
 
 
 



1.1.6 NK cells 
 
Populations of NK cells present different changes with aging, being the most dramatic the 
reduction of the CD56bright subset as a result of the diminished output of new cells from the 
aged bone marrow (Pinti et al., 2016). In the absence of new cells, a well-preserved memory-
like NK cell phenotype, defined by the expression of CD94, NKG2C, and CD57, has been 
described in elderly individuals. Expansion of this population was first associated to CMV 
infection, nonetheless, the same phenotype was reported in CMV seronegative individuals, 
suggesting that other factors of the aging immune system contribute to the development of 
these NK cells (Bayard et al., 2016). On the other hand, CD56dim NK cells increase with age 
but they have a deficient production of chemokines and a reduced cytotoxicity against MHC-I 
negative cells, even if IFN-γ production remains the same as those seen in adults (Cianci et al., 
2020). 
 
1.2 Inflammaging 
 
Other important component of the immunosenescence phenomenon is inflammaging, first 
defined in the year 2000 as a “a global reduction in the capability to cope with a variety of 
stressors and a concomitant progressive increase in the proinflammatory status.” (Franceschi 
et al., 2000). This chronic low-grade inflammation has been linked with multiple age-
associated diseases such as coronary heart disease, rheumatoid arthritis, osteoporosis, 
Alzheimer’s disease, and type-2 diabetes (Frasca and Blomberg, 2016). Interestingly, healthy 
elderly individuals still show, to a lesser degree, signs of this subclinical inflammation even in 
the absence of any major health condition (Pawelec et al., 2020). Inflammaging has therefore 
be suggested to be the biological background that, in addition to genetic and environmental 
components, favours the development of age-associated diseases (Franceschi et al., 2000). 
Although there is no consensus on the molecules that ultimately define inflammaging, 
cytokines such as IL-6, IL-1β, IL-8 and TNFa as well as acute phase proteins such as CRP, are 
usually used as biomarkers of inflammaging (Pinti et al., 2016). In fact, high levels of these 
molecules have been consistently found as strong predictors of all-cause mortality (Morrisette-
Thomas et al., 2014), and have been demonstrated to be detrimental for the response to 
vaccination against influenza, yellow fever, and hepatitis B (Bajaj et al., 2021). 
 
Globally, inflammaging is frequently described as the aging of the innate immune system, and 
it can be broadly defined by two distinct phenomena: a low-level chronic production of pro-
inflammatory mediators, and the immune paralysis of specific immune functions upon immune 
challenge (Fulop et al., 2018). However, limiting inflammaging to an only innate phenomenon 
puts us at risk of underappreciating its complexity and its relationship with immunosenescence, 
or even with aging as a whole. In fact, inflammaging has been proposed as one of the main 
pillars in geroscience research, as it has been shown to be governed by multifactorial elements 
that are greatly intertwined, and which overlap with other age-related changes of different body 
systems (Sierra, 2016).  
 
Dissecting the causes of inflammaging is therefore a major challenge. One of the main drivers 
of this dysregulated immune response is the incomplete resolution of the acute inflammatory 
phase. A recent study  has shown that, despite the onset of acute inflammation being similar in 
young and old individuals, a reduction in the expression of the TIM-4 receptor on the elderly 
macrophages prevented appropriate resolution by efferocytosis, and therefore, led to the 
accumulation of pro-inflammatory signalling at the site of stimulation (De Maeyer and 
Chambers, 2021). Other important element contributing to inflammaging is the increase in the 



number of senescent cells in elderly individuals (Bajaj et al., 2021). These senescent cells are 
characterised by “having dysfunctional mitochondria, defective autophagy/mitophagy, 
endoplasmic reticulum stress, activation of inflammasome by cell debris and misplaced self-
molecules, defective ubiquitin/proteasome system, and activation of DNA damage response” 
(Fulop et al., 2018). When put together, these alterations to the cell homeostasis prompt to an 
accumulation of DAMPs which in turn triggers a pro-inflammatory response through activation 
of different cell subsets (Chambers and Akbar, 2020). Moreover, some of these cells acquire a 
particular phenotype known as senescent-associated secretory phenotype (SASP), which 
induces a high production of pro-inflammatory cytokines and miRNAs (Frasca et al., 2017). 
 
1.3 Immunosenescence beyond the immune system 
 
So far, all of the differences of the aging immune system that have been reviewed are intrinsic 
changes to different immune cell populations. Nevertheless, extrinsic changes can also have an 
important impact on the quality and quantity of the immune response, as well as on its 
homeostasis in elderly individuals. The interpretation of extrinsic, however, can be done at two 
different levels. It can refer to the changes in other body organs or tissues that significantly 
shape the immune system. For instance, the reduction of the lymph node’s total size due to the 
age-related decrease in the numbers of fibroblastic reticular cells and lymphoid endothelial 
cells that make up this tissue. These changes result in a decreased capacity to maintain naïve T 
cells, and the disruption of the overall organization of lymph nodes and germinal centres. Other 
interesting change is the replacement of bone marrow by adipocytes, an alteration that has been 
associated with impaired haematopoiesis, as well as with secretion of leptin, adiponectin, and 
pro-inflammatory cytokines (Bajaj et al., 2021). 
 
When interpreted more broadly, extrinsic factors might also include external agents and/or 
environmental factors that interact or alter the aging immune system. One of such factors is the 
gut microbiota, which has been documented to change with age although it is still not clear if 
this happens as a result of aging, or as a determinant of it (Cianci et al., 2020). The work in this 
field has experienced a boom in the last decade, and a detailed revision would be out of the 
scope of this review. Still, it is interesting to mention that studies in germ-free mice have shown 
that the gut microbiome is essential for specific B cell differentiation upon immunization 
(Cianci et al., 2020). Likewise, certain bacterial species in gnotobiotic mice have been proven 
to have either a positive or a negative impact on the immune response to oral and parenteral 
vaccines. To test these hypotheses in humans, interventional studies have been approached by 
two different routes, namely probiotics and antibiotics. Results from the former have been 
highly variable, and their interpretation has therefore resulted challenging. Experiments with 
antibiotics, in contrast, have proven that dysbiosis of the gut microbiome can impair the 
antibody response to the influenza vaccine in individuals with no pre-existing memory (de Jong 
et al., 2020). 
 
Another key factor that can affect the response to vaccination are infections. A large body of 
evidence has demonstrated that concomitant infections at the time of vaccination have a 
negative impact on the seroconversion rate, or on the post-immunization antibody titre of 
affected individuals (Zimmermann and Curtis, 2019). Most of these studies, however, have 
been done in children as most vaccines are expected to be administered in the first years of life. 
Nonetheless, CMV infection has been found to be particularly relevant in the elderly due to its 
contribution to several processes of the aging immune system such as inflammaging and 
memory inflation. CMV has been proven to increase the age-associated inflammation, 
particularly by induction of B cell-derived TNF-a, which in turn promotes the transcription of 



its viral early promoters (Pinti et al., 2016). Also, CMV is considered one of the main drivers 
of  T cell memory inflation, affecting both aβ and γδ T cells (Pinti et al., 2016). Regarding the 
effect of CMV infection on vaccination, the results are rather contrasting. Most evidence seems 
to suggest that CMV seropositivity has a negative impact on vaccine responsiveness both in 
young and elderly individuals, but particularly for the latter due to the influence of CMV on 
immunosenescence as a whole. Moreover, studies focusing on aged individuals found that 
CMV serostatus has a greater impact on the antibody response to vaccination than other 
inflammatory markers such as IL-6 (Aiello et al., 2017). On the other hand, a higher HAI in a 
CMV+ group compared to the control group has been reported, and claimed to be due to the 
positive effect of infection on keeping a high immune alertness (Fulop et al., 2018).  
 
Not only ongoing infections are able to reshape the immune response. The last decade has seen 
compelling progress in the study of trained immunity, which can be defined as the enhanced 
responsiveness of the innate immune cells as a result of their previous activation. However, 
Franceschi et al.  (2017) propose that the same components that define trained immunity, 
namely intensity, type, and temporal sequence of antigenic stimuli; are not exclusive of the 
innate immune system, but can also apply to the immune system as a whole. In other words, 
they argue that an individual’s response will not only be contingent to its current state, but it 
will also depend on the nature and intensity of the previous immune challenges it has faced in 
the past. Given that each individual’s immune history is unique, this new concept has been 
named immunobiography. Accordingly, the fact that different immunobiographies can explain 
some of the variation seen in the immune response within a population, makes it of particular 
relevance for the elderly, as it can be expected that the singularity of each individual’s 
immunobiography will increase with age. Advancements in this field suggest that the study of 
the immune response in the elderly should also consider an individual’s previous history of 
infections, an approach that might explain some of the conflicting results that have been 
discussed so far in this review (Pawelec, 2020). 
 

 



 
1.4 Systems immunology: the new horizon 
 
Despite our progress at identifying several age-related changes that impact the elderly immune 
response, determining which and how exactly these alterations are responsible for the 
heterogeneous and defective response to vaccination remains to be answered. Interest for this 
problem has not been an exclusively academic matter; in fact, the need of the pharmaceutical 
industry to fill in the existent gap between pre-clinical and clinical studies, gave origin to the 
“translational sciences” in the early 2000’s (Ahmed et al., 2012). Development of this field 
boosted the search for biomarkers that could help understanding and predicting the immune 
response mechanisms, as well as finding surrogates or correlates of protection that would allow 
its assessment. These studies resulted in important discoveries such as the correlation between 
AID expression and the B cell response in elderly against the influenza vaccine; the functional 
quality decrease of the opsonophagocytic antibodies after Pneumococcus immunization; and 
the correlation between CD14+CD16++ monocytes and the probability of developing systemic 
adverse effects after Yellow Fever vaccination in individuals 60 years or older (Ahmed et al., 
2012).  
 

 
One of the main obstacles during the early stages of research in this field was to search for new 
biomarkers using a hit-or-miss strategy. Despite efforts being knowledge-driven, looking for 
biomarkers with such an approach is like looking for a needle in a haystack; with even greater 
complexity in the case of the ageing immune system in which, rather than a single factor, 
changes are explained by the interaction of multiple factors. An answer to this problem came 
with the development of new transcriptomic and DNA microarray technologies which 
permitted further exploration beyond what flow cytometry had allowed at the time (Haining 
and Wherry, 2010). This approach let scientists in the oncology field to develop prognosis 
predictors based on gene expression signatures, an idea later applied in immunology to explain 
the heterogeneity of the immune response (Ahmed et al., 2012). Later on, the development of 
new technologies and the boom of the “omics” supported a larger, more holistic exploration of 
the dynamics behind the immune response (Figure 2). This new method integrating large 
volumes of data from different components of a given biological system was named systems 
immunology, a term derived from the broader systems biology approached used in other fields 
of the biomedical sciences. 
 
When applied specifically to vaccines, “the goal of systems vaccinology is to gain a more 
global representation of the immune response to vaccination, with the hopes of identifying 
mechanisms of action of current successful vaccines and to use this information for the rational 
design of novel vaccines” (Sai S. Duraisingham, 2012). In contrast to the hit-or-miss approach 
mentioned earlier, systems vaccinology is a data-driven method, and therefore, it relies on the 
measurement of large amounts and varieties of biological data. This complex data requires 
more robust computational methods than those previously used, which is why the systems 
biology field would not have been able to advance without the simultaneous development of 
machine learning algorithms. In addition to the traditional regression analyses, immunologist 
have begun to explore other algorithms such as support vector machines (SVM), artificial 
neural networks, Logistic Multiple Network-constrained Regression, and the most recent 
Sequential Iterative Modelling Over-Night, also known as SIMON (Gonzalez-Dias et al., 
2020). This novel approach has led to striking results including the discovery of new 
biomarkers and gene signatures that can be used as correlates of protection or predictors of 
clinical outcomes  (Li et al., 2017; Nakaya et al., 2011). Table 1. summarizes some of the most 



relevant results obtained using this approach for different vaccines, privileging those in which 
elderly individuals were included in the study cohort.  
 
Research in this field still faces some limitations that have prevented researchers from filling 
the gaps in our understanding of the immune response to vaccination in the elderly. One of 
them being the sample size of the clinical trials. As seen in Table 1, most of the study cohorts 
count with less than 100 participants, and some of them do not even include elderly people. 
This represents a challenge in two fronts. First, the low number of elderly patients decrease the 
probability of finding subtle differences that might allow to discriminate this population from 
their younger counterparts. Second, having a low number of individuals but a large number of 
features measured (as in the case of transcriptomics), leads to the phenomenon known as the 
curse of dimensionality (Gonzalez-Dias et al., 2020), which increases the risk of overfitting the 
machine learning algorithm resulting in a poor predictive performance. Issues of overfitting 
can arise as well from the fact that most of these studies are validated through in-cohort cross-
validation, and therefore, their predictive power when outside of the particular conditions of 
the clinical study remain unknown. Another critique to the results in this field is the variability 
in the timing in which samples are taken. Are the changes reported an immediate variation of 
the immune response? Or are they stable changes before, during, and after the response? 
Finally, it will be important for future clinical trials to be designed in a way that a more diverse 
genetic and social population is included in order to capture a more realistic range of immune 
variation.  
 
Despite the challenges yet to overcome, the relevance and value of the “systems” approach 
have become even more evident nowadays with the SARS-CoV-2 pandemic. By the end of 
2020, Arunachalam et al.  published a study in which PBMC phenotyping and transcriptomic 
data of healthy versus COVID-19 patients was analysed using this methodology. The authors 
found that PBMCs from COVID-19 patients presented a decreased expression of HLA-DR, as 
well as myeloid-derived proinflammatory cytokines. Levels in plasma of EN-RAGE, 
TNFSF14, and oncostatin M were also found to correlate with disease severity. These results 
have highlighted possible mechanisms to explain the pathophysiology of the SARS-CoV-2 
infection, and have revealed potential targets for a therapeutic intervention. Conceivably, 
applying the same strategy to a cohort including a robust number of elderly individuals will 
surely shed some lights on the differences in the immune response among different age groups, 
and can lead as well to an improved and more rational vaccine design. As different cytometry 
technologies and next generation sequencing (NGS) platforms become more accessible, it is 
reasonable to think that application of the systems approach will keep expanding. The future 
of data-driven vaccine optimization and personalized immune profiling has already begun.  
 
 
 



Table 1. Summary of main findings using the system vaccinology approach 
Vaccine Model Study Cohort (n) Main Findings Ref. 

    

Influenza (LAIV and 
TIV) 

 Young healthy adults (18–
50) during the three 

consecutive influenza seasons 
(n = 67)   

Molecular signatures at baseline were shown to correlate with later levels of antibody titres. These signatures, composed of a network of 
genes related to inflammatory and antimicrobial responses, were used to develop a DAMIP  model with a predictive accuracy of ~90%. 

(Nakaya et al., 
2011) 

    

Influenza (TIV) 
Single cohort of healthy 

ambulatory subjects ages 20 
to >89 years (n = 91) 

Use of a machine learning approach to determine a positive correlation between a high antibody response to vaccination, and a particular 
gene cluster related to lipid biosynthesis. Testosterone, a negative regulator of some of those genes, was shown to have an inverse 
correlation with antibody titre, unravelling a possible mechanism to explain sex-based immune response differences.  

(Furman et al., 
2014) 

    

Hepatatis B       
(HBsAg) 

Healthy adults from 25 to 40 
(n = 30) or >65 (n = 144) 

Development of a transcriptomics-based prediction model for vaccine response based on baseline measurements, with a 65% accuracy rate. 
Identification of gene signatures of increased B cell responses at baseline that positively correlate with vaccine response. In contrast, 
inflammatory response transcripts, and frequency of pro-inflammatory innate cells was found to be associated with poorer responses. 

(Fourati et al., 
2016) 

    

Malaria (RTS,S and 
rAd35) 

Malaria-naïve healthy adults 
(n = 46). Two immunization 

regimens: RRR or ARR 

Protection conferred by different immunization regimens is associated with regimen-specific correlates of protection. Molecular signatures 
of B and plasma cells correlated with high antibody response only in subjects vaccinated with the RRR regimen, whereas innate immunity 
and dendritic cell activation signatures were associated with it only in the ARR regimen. Overall, results suggest that there can be multiple 
mechanisms leading to protection against P. falciparum. 

 (Kazmin et al., 
2017) 

    

Influenza (TIV) 

Multi-cohort across five 
consequtive Influenza 

seasons.  Indivuduals below 
35 and above 60 (n = 275) 

Identification of nine genes and three gene modules that were significantly associated with the magnitude of the antibody response, and 
which were validated in an independent cohort. Nonetheless, an inverse correlation was found between the effect of these gene signatures in 
young and older individuals, meaning that those gene signatures correlated with a better response in the young, are associated with worse 
responses in older individuals. 

(Avey et al., 2017) 

    

Ebola (rVSV-
ZEBOV) 

Healthy adult subjects (n = 
20) 

Innate immune signatures based on different cell subsets such as monocytes, dendritic cells, and NK cells; as well as early innate markers, 
particularly IP-10, were found to correlate with the Ebola vaccine-specific antibody response. It was also shown that IP-10 expression 
levels on day three after vaccination behaves as an independent correlate of the antibody response. 

(Rechtien et al., 
2017) 

    

Shingles (Zostavax) Healthy adults (n = 33) and 
elderly (n = 44) subjects 

Immune and metabolic correlates of vaccine protection were identified. The inositol phosphate, sterol, and glycerophospholipids 
metabolism networks are strongly related to immune protection. The proposed MMRN model shows a marked association between immune 
signatures derived from the transcriptomic and metabolomic datasets. 

(Li et al., 2017) 

    
Influenza (TIV), 

Yellow Fever (YF-
17D), and SLE 

Multi-cohort comparison. 
Healthy adult subjects (n = 

10-96 per cohort) 

The peripheral blood signature at baseline that predicts antibody response to the influenza vaccine can also predict the protective response 
to yellow fever vaccination. Similarly, this same pathway assessed in quiescence correlates with flare episodes in SLE patients. 

(Kotliarov et al., 
2020) 

LAIV: Live Attenuated Influenza Vaccine; TIV: Trivalent Inactivated Influenza Vaccine; DAMIP: Discriminant Analysis via Mixed Integer Programming; rAd35: recombinant Adenovirus 35 ; RRR: 
three doses of RTS,S immunization regime; ARR: one dose of rAd35 followed by two doses of RTS,S/AS01 immunization regime; MMRN: Multifactorial Response Network . 

  



2. Aim of the study 
 
This thesis takes place in the frame of the Vaccines and InfecTious diseases in the Ageing 
population (VITAL) project, a European research consortium that aims at providing evidence-
based knowledge on vaccination strategies for the elderly population. For achieve this, the 
consortium has established two main working axes: the study of the mechanisms mediating 
immunosenescence, and the assessment of the burden of infectious diseases in the elderly 
population. In line with the former, this study focuses on the effects of inflammaging on 
vaccine responsiveness, and it aims to develop a prediction model that will anticipate the 
quality of the immune response to the influenza vaccine. Such model will be based on the 
baseline levels of 25 inflammation biomarkers measured in serum from participants of the 
VITAL clinical cohort. Having an accurate prediction model of vaccine responsiveness 
simplifies the identification of the variables that contribute the most to the predicted outcome, 
giving us a better insight at those components of inflammation that are most detrimental for 
the immune response. Furthermore, such model can be as well a powerful public health tool to 
identify the best target population for vaccination policies. 
 
The VITAL project was initially presented in 2019, and its main study targets were the 
influenza and pneumococcal vaccines given their relevance for the elderly population. 
Nonetheless, amidst the global SARS-CoV-2 pandemic, we realized the potential of the VITAL 
cohort as a framework to study the elderly immune response against the SARS-CoV-2 
vaccines, and its differences with the response observed in other age populations. 
Consequently, the second aim of this study was to develop a spectral cytometry 
immunophenotyping panel that allows the characterization of the immune response to the 
SARS-CoV-2 vaccines in human PBMCs. Such panel will allow the identification of the kind 
of immune response required to confer protection after immunization. 

3. Materials and Methods 
 
3.1 Clinical study and sampling protocol 
 
Samples used in this project were obtained as described by the clinical protocol “Immune 
responses to influenza and pneumococcal conjugate vaccines in older adults compared to 
middle-aged adults and adults”. This study has received approval by the Medical Ethical 
Committee at the University Medical Centre (UMC) Utrecht (The Netherlands) under 
registration NL69701.041.19. Elderly participants were recruited by the Spaarne Hospital in 
Hoofddorp (The Netherlands) from different cohorts of previous studies on Influenza-like 
illness. Adult and pre-elderly subjects recruited were mainly health care workers and personnel 
at the UMC Utrecht, and the Utrecht Science Park-Bilthoven, that were eligible for a yearly 
seasonal influenza vaccine through their employer. The main inclusion criteria were to have 
been vaccinated against seasonal influenza for the previous season, and to never have been 
administered a conjugated pneumococcal vaccination. Main exclusion criteria were the use of 
high-dose or frequent use of corticosteroids; and any medical condition for which procedures 
in the study protocol could pose a significant risk. Serum samples were obtained by 
centrifugation after venepuncture 0 to 8 weeks before vaccination with the seasonal 
quadrivalent inactivated influenza vaccine (QIV) (2019-2020).  
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3.2 Measurement of inflammation biomarkers 
 
Levels of different inflammatory biomarkers were measured in serum of each study subject 
obtained as mentioned above. According to their concentration range, cytokines were measured 
using different methodologies as follows:  
 

- Neopterin was measured using the competitive ELISA kit by Tecan (RE59321). Assay 
protocol was performed as per manufacturer instructions with exception of the orbital 
shaker speed which was adjusted to 430 rpm. Concentrations were calculated based on 
the logistic regression obtained from duplicates of the standard curve.  
 

- Measurement of iFABP2 was done using R&D Systems™ indirect ELISA kit 
(DFBP20) following the manufacturer’s protocol modifying the speed of orbital 
shaking during incubation to 430 rpm. Concentrations were calculated from 
extrapolation of the absorbance data on the linear regression equation obtained from 
duplicates of the standard curve. Sample absorbance for Neopterin and iFAPB2 were 
measured in an Infinite® 200 PRO plate reader (Tecan) at 450 nm with wavelength 
correction based on values at 540 nm. 

 
- GM-CSF levels were determined using single molecule arrays (Simoa®) with the GM-

CSF 2.0 Reagent Kit (REF 102329) developed by Quanterix™. Protocol was run as per 
kit’s instructions using the Simoa® HD-1 analyzer. Samples were measured in two 
different runs based on the capacity of the equipment. Concentrations were determined 
according to the equipment’s pre-determined fit equation based on duplicate values of 
the standard curve.  
 

- Measurements of TNF-a, IFN-γ, IL-1β, IL-10, and IL-6 were performed using a 
customized Human CorPlex Cytokine Panel kit (97-0329) by Quanterix™ as per 
manufacturer’s instructions besides a reduction in the initial serum centrifugation speed 
which was adjusted to 4600xg based on equipment availability. Imaging and analysis 
of these cytokines was done using the Quanterix SP-X™ system. Concentrations were 
determined according to the equipment’s pre-determined fit equation based on triplicate 
values of the standard curve. The value of the most concentrated point of the standard 
curve was omitted from the calculations whenever R2 < 0.98.  

 
Levels of C-reactive protein (CRP), CD14, Calprotectin, IL-8, Elastase, Proteinase 3 (PR3), 
Angiopoietin 2 (Angpt-2), Interleukin 1 receptor agonist (IL-1Ra), CD25, C5a, CCL2, CD163, 
CXCL10, GP130, IL-6R, Pentraxin-3 (PTX3), and Chitinase-3-like protein 1 (YKL-40); were 
measured by Luminex or ELISA and were performed by Dr. Yannick van Sleen at the 
University Medical Center Groningen (Groningen, the Netherlands) in the frame of the VITAL 
project.  Concentration boxplots were created using Prism GraphPad version 7.0a. 
 
3.3 Statistical analysis and prediction models 
 
For the purposes of the statistical analyses and the data interpretation, subjects were grouped 
in different age categories as follows: Adults (18-49 years old), Pre-Elderly (50-64 years old), 
and Elderly (<65 years old).  Normal distributions for each of the inflammation biomarkers 
measured was tested with the Shapiro test, followed by Log10 transformation of all variables 
with the exception of age. Analysis of variance was done using the Kruskal-Wallis test with 
the Holm correction method. Significance was determined as an adjusted p-value > 0.05. Post-



 18 

hoc pairwise comparison was performed using the Dunn’s test, and the Mann-Whitney U test 
was used for single pairwise comparisons by sex within age groups. 
Spearman correlation was calculated on the Log10 transformed data. The significance level was 
corrected by dividing ⍺ by the total number of comparisons. Principal component analysis 
(PCA) was carried out using the FactoMineR, and the factoextra packages in R. Individuals 
with no age information were excluded from the analysis (n = 311), for the other variables with 
missing values, the missMDA package was used to impute values that would not affect the 
loadings’ values.  
 
To create a prediction model based on the parameters measured, a Lasso logistic regression 
and a support vector machine (SVM) algorithms were used. Both models were based on the 
data from subjects with no missing data (n = 227).  To run the model simulation, subjects were 
randomly assigned as good or poor responders based on the proportion of responders and non-
responders reported by Furman et al. (2013). Given the lack of data on the response rate of pre-
elderly individuals, this age category was excluded from the models. The dataset was divided 
in training and testing sets at a proportion of 0.8 and 0.2 respectively. Both models were trained 
using a 5-fold cross-validation. The Lasso regression was programmed using the caret package 
and tuned using the optimized lambda and kappa values.  On the other hand, the SVM model 
was created using the e1071 package, and using a linear kernel.  
 
All the statistical analyses, and program modelling were performed using RStudio© Version 
1.2.5033. 
 
3.4 Spectral cytometry 
 
To optimize an immunophenotyping panel to assess the immune response against the SARS-
CoV-2 vaccine, cells from healthy donors were stimulated under different conditions, and later 
stained and analysed using spectral cytometry. For this, frozen PBMCs were thawed in 10 mL 
of warm R10+ media (RPMI 10% FBS supplemented with 1% sodium pyruvate, 1% L-
glutamine, 1% essential amino acids, and 1% penicillin-streptomycin) centrifuged at 1600 x g 
for 6 min, and later resuspend in 10 mL of R10+. 20 uL of cells were diluted 1:2 in Trypan 
blue and counted on a Kova counting chamber (87144, Kova International). The cells were 
then centrifuged and resuspended in order to dispatch 2x106 cells in 500 uL of R10+ in sterile 
5mL round bottom polystyrene FACS tubes. 10 uL of anti-CD107a (Table X) was added to 
each of the tubes, which were then treated under a different stimulation condition, namely 
Staphylococcus enterotoxin B (SEB) 6 ug/mL (s4881, Sigma-Aldrich), 2 uL of Dynabeads™ 
Mouse T-Activator CD3/CD28 (11452D, ThermoFisher Scientific), Concanavalin A 5 ug/mL 
(C5275, Sigma-Aldrich), or R10+ as a negative control. The cells were incubated for 1 hour at 
37 ºC followed by addition of Brefeldin A (B6542, Sigma-Aldrich), and Monensin (m5273, 
Sigma-Aldrich) for a final concentration of 5 ug/mL each. Incubation at 37 ºC was continued 
overnight. 12-14 h post stimulation, cells were rinsed and the Pheno Mix antibody mix (Table 
2.) was added and left for incubation for 15 min in the dark. Afterward cells were washed with 
a 2% FBS solution in PBS, and permeabilize using 200 uL of Cytofix/Cytoperm (554714, BD 
Biosciences) for 20 min. Next cells were washed twice using the Perm/Wash solution (554714, 
BD Biosciences) diluted 1:10 as per manufacturer’s instructions. Cells were then incubated at 
4ºC for 20 min with the Function Mix (Table 2.), rinsed two times with the Perm Wash solution 
mentioned above, and fixed with a 1% PFA solution.  
 
FACS was performed on an Cytek™ Aurora spectral cytometer (Cytek Biosciences). 
Compensation matrix for spectral unmixing was done using Anti-Mouse Ig, κ/Negative 
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compensation beads stained with the antibodies on Table 2. Data was initially processed and 
unmixed using the SpectroFlo® Software (Cytek Biosciences) and exported as a .fcs file for 
further analysis on FlowJo v.10.7.2 (Beckton, Dickinson & Company). 
 
 

 
 

4. Results 
 
4.1 VITAL cohort characteristics 
 
To characterize how the inflammatory status pre-vaccination might affect an individual’s 
response to immunization, a panel of 25 inflammatory-associated biomarkers were measured 
in 316 ambulatory healthy subjects that took part of the VITAL clinical trial. Almost half of 
the participants were elderly individuals, and the male to female ratio varied in each of the 
three age groups. On average, participants’ body mass index (BMI) was normal for the adult 
and pre-elderly groups, while for the elderly the average was slightly above the normal range 
(Table 3.).   
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4.2 The specific increase of different 
inflammatory biomarkers with age is 
described by three distinct trajectories. 
 
Consistent with the development of 
inflammaging with age, the concentration 
of 18 out of the 25 measured biomarkers 
was significantly higher in the elderly as 
compared to the adult group 
(Supplementary Table 1). However, when 

considering the levels of inflammation in the pre-elderly, it is evident that the time (i.e., the 
age) at which each biomarker starts progressing towards a more inflammatory state is not the 
same for all the measured molecules. According to the level of inflammation in the pre-elderly, 
the increase of each biomarker with age can be described by one of three different trajectories. 
First are those for which the concentration progressively increased with age, with pre-elderly 
presenting a distinct intermediate level of inflammation between the adult and the elderly 
(Figure 3A). IL-6, neopterin, YKL-40, CXCL10, and CD163 belonged to this category. Second 
are those for which the pre-elderly average concentration was significantly higher than the one 
measured in adults but indistinguishable from that of the elderly (Figure 3B). This category 
includes IL-8, CCL2, GP130, IL-6R, and iFABP2. Finally, a third category is defined by those 
biomarkers for which no significant differences were observed between adult and pre-elderly 
despite the high inflammation levels in the elderly (Figure 3C). This was the case for CRP, 
CD14, PR3, Angpt-2, CD25, IL-1RA, and Elastase.  
 
In contrast to the molecules in these three categories, no significant differences in the 
concentrations of GM-CSF, IL-1β, TNF⍺, and IL-10 was detected across age groups (Figure 
3D). These results prove that the increase in the age-associated inflammation behaves 
differently for each of the biomarkers here studied, and suggest that the onset of inflammaging 
might begin before and individual reaches an old age. Interestingly, there was no significant 
variation in the concentration of these biomarkers when comparing male and female subjects 
within each age group (data not shown), with the exception of IL-1β in pre-elderly (p-
value=0.008) for which male participants had higher levels compared to their female 
counterparts.  
 
4.3 Inflammation positively correlates with age but is not enough to discriminate between age 
groups. 
 
Association between the biomarkers measured was calculated using Spearman’s correlation 
coefficient, adjusting the p-value as described in the Materials and Methods section. Out of the 
26 parameters included, IL-1RA was the marker that correlated with the largest number of 
parameters (17), followed by IL-6 (15), age (14), as finally Neopterin and YKL-40 (12 each). 
The strongest correlation was between elastase and PR3 (0.7). On the contrary, others like GM-
CSF and CCL2 did not correlate with any other parameter. Interestingly, most of the 
correlations were very modest, suggesting that the selection of biomarkers in this study was 
not redundant, and that it covers different processes of the inflammatory response.  
 
To gain further insight on how these parameters explained the variability between the subjects, 
the data was analysed using Principal Component Analysis (PCA).  The eigenvalues obtained 
for the first and second principal components shows that IL-1RA, Age, Neopterin, IL-6, and 
YKL-40 are the parameters that contribute the most to the first dimension as well as to the 
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overall distribution of the data (Figure 5. and Supplementary Figure 2A). On the other hand, 
Calprotectin, Angpt-2, IL-1β and elastase explain the greatest amount of variance on the second 
dimension (Supplementary Figure 2B). Remarkably, gender was the parameter that contributed 
the least to explain the observed variance in the first two principal components. Nonetheless, 
it is important to remember that the two components shown in the graph only explain 25% of 
the total variation and, therefore, the influence of gender in the total variability should not be 
discarded.  
 
Finally, subjects on the PCA plot were labelled according to their age to test if it was possible 
to discriminate between different age groups based on the levels of the different inflammatory 
markers. Unfortunately, there is significant overlap between the cluster from each of the age 
groups indicating that these parameters are not enough to accurately group an individual 
according to his or her age (Figure 6.). Despite that, when taken together, Figure 5. and Figure 
6. suggest that our data is consistent with the previous literature in that the cluster with the 
more proinflammatory profile was the that of the elderly. 
 

 
 
4.4 SVM outperforms Lasso logistic regression at predicting vaccine responsiveness 
 
By the time the present work was submitted, information about the subjects’ immune response 
to vaccination was not yet available. Therefore, to be able to develop a predictive model using 
machine learning, I simulated the data using the rates of vaccine responsiveness reported by 
Brodin et al.  (2015) in a study cohort in which only 38% of the elderly population reached a 
positive immune response, compared to 80% of adults. These rates were used as the probability 
that each of the VITAL subjects in my data set had to be randomly assigned as a good responder 
depending on their age group. Given that there was no specific information for the pre-elderly 
group, I decided to omit this age category to avoid introducing any unknown bias.  
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To increase the chances of creating an accurate prediction model, two different machine 
learning algorithms were used. Lasso logistic regression and support vector machine (SVM) 
were chosen over others given the nature of my data, as well as these models’ simplicity and 
interpretability. In both cases 80% of the data was used to train the model using a 5-fold cross-
validation. When tested using the remaining 20% of the data, a better predictive performance 
is observed with the SVM model with an accuracy of 0.73 in its predictions, compared to 0.67 
prediction accuracy for the lasso logistic regression (Figure 7). This difference was mostly due 
to the higher rate of type I errors in the lasso regression. It is reasonable to think that the 
accuracy rates of both models will increase once the real data becomes available, however, 
these results demonstrate that it is possible to develop a prediction tool for vaccine 
responsiveness based on inflammatory biomarkers. 
 

 
 
 
4.5 Spectral cytometry as a potential tool to assess vaccine responsiveness to the SARS-CoV-
2 vaccine. 
 
Contrary to the influenza vaccine for which the HAI titre fold-change has been longed been 
used as a gold standard measure of response to immunization; the correlates and surrogates of 
protection for the SARS-CoV-2 vaccines remain loosely defined.  As a first approach to 
characterize the immune response to such vaccines, I designed a comprehensive 
immunophenotyping spectral cytometry panel with 20 markers to try to capture a wider arrange 
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of immune parameters. (Table 2.). To optimize this tool, the panel was tested using human 
PBMCs stimulated under different conditions, namely concanavalin A (ConA), Streptococcus 
endotoxin B (SEB), and CD3/CD28 magnetic beads as described in the Materials and Methods 
section. Phenotypic analysis of the different T cell subpopulations was done following the 
gating strategy described on Supplementary Figure 2. Noteworthy, a significant increase of the 
CD8+ T cells was observed under stimulation with ConA, mostly due to an unexpected 2-fold 
increase in the number of naïve lymphocytes when compared to the unstimulated cells. 
However, the percentage of TCM and TEM was half of that of the unstimulated group (Figure 
8B). The proportions of these CD8+ subsets for the SEB or beads treated cells was considerably 
similar to that of the control group (Table 5.). In contrast, total numbers of CD4+ cells in the 
ConA-treated condition were lower than those in the control, despite the sharp increase in the 
proportion of naïve lymphocytes in the latter (Figure 8A).  

 

 
 

To assess the lymphocyte function upon stimulation, the gating strategy presented in the 
Supplementary Figure 3 was used. By evaluating the cytokine secretion profile in each of the 
conditions (Table 5.) it is immediately evident that ConA is consistently the greatest inducer 
of the immune response under my experimental conditions. Notorious induction of TNF⍺ is 
seen both in CD8+ and CD4+ cells (Figure 9A), as well as robust expression of IL-2 in CD4+ 

(Figure 9B), and MIP1-β mostly in the CD8+. Only very low levels of IL-8 and IL-1β were 
detected across the different conditions, suggesting that optimization of my staining protocol 
might be required. Unexpectedly, secretion of granzyme B and perforin seemed to be higher in 
the unstimulated cells than in any other group, Finally, no CD107a was detected in any of the 
treatments. Overall, it can be concluded that ConA is the best positive control to assess cytokine 
induction; nevertheless, it is still necessary to optimize the staining protocol to be able to 
capture those cytokines that were not properly detected. This experiment confirms the 
usefulness of spectral cytometry as an approach to evaluate a broad range of phenotypic and 
functional markers that will be necessary when studying the response to the SARS-CoV-2 
vaccines. 
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5. Discussion: 
 
The application of machine learning methods in the field of immunology has considerably 
increased in the last decade.  This approach has been proven to be a useful tool to explore the 
mechanisms regulating the immune response, as well as to develop prediction models that 
support clinical decision-making and public health policy (Furman et al., 2013). This approach 
has also emerged as a strategy to study the mechanisms behind the ageing of the immune 
system, a phenomenon for which several factors are known to contribute, but for which a 
practical model able to discriminate between good and poor responses to vaccination is still 
lacking. In the present study I developed two inflammation-driven machine learning models 
with the potential to predict vaccine responsiveness. The construction of such models was 
based on the levels of 25 inflammation-related biomarkers measured in sera from 316 
participants of the VITAL cohort which included subjects from 25 to 92 years old, grouped in 
three different age categories, namely adult, elderly, and pre-elderly. Inclusion of the latter 
category separates the VITAL cohort from most clinical studies in which only the age extremes 
are compared. Considering this intermediate age group provides a valuable insight in the 
development of inflammaging and its impact at different stages of life. For instance, by 
examining the concentration increase of the different biomarkers between age groups, I was 
able to determine that the progression of each biomarker towards a more pro-inflammatory 
state follows one of three specific types of trajectory (Figure 3). These observations suggest 
that the shift towards inflammaging is gradual, and that it begins before most individuals reach 
an old age. These findings are notably important for the design of vaccination policies, 
favouring an earlier immunization schedule for the adult population. 
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For those markers which remained stable across the three age groups (Figure 3D), it is 
reasonable to think that differences in the secretion of these molecules might not be evident in 
the absence of immune stimuli. Moreover, the results in this study are consistent with what has 
been described by Di Iorio et al. (2003), who showed no association between IL-1β levels at 
baseline and age, sex, or serum levels of other inflammatory molecules such as IL-6, IL-1Ra, 
and TNF⍺.  Nonetheless, the same study reported a positive correlation between IL-1β levels 
and some age-associated diseases such as angina or congestive heart failure. It is therefore 
important to mention that frailty of the VITAL participants was not included in this study, 
limiting the possibility to assess the role of these inflammatory biomarkers in healthy ageing 
compared to pathological ageing (Goronzy and Weyand, 2013).  
 

Figure 7. Classification performance of each of the prediction models. 
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A significant positive correlation is however observed between several of the measured 
biomarkers (Figure 4). Not surprisingly, elastase and PR3 had the highest correlation as both 
serine proteases have been shown to have overlapping substrate specificity, and are both 
implicated in the degranulation response in neutrophils (Kessenbrock et al., 2008). The overall 
degree of association of most biomarkers with age was remarkably higher than those previously 
reported by Morrisette-Thomas et al. (2014), particularly for IL-RA (0.30 vs 0.07), IL-6 (0.48 
vs 0.31), and CRP (0.28 vs 0.15). Other markers not included in that study but here measured 
had even stronger correlations with age, including neopterin (0.43), CXCL10 (0.49), and YKL-
40 (0.60); suggesting that our biomarker panel is able to successfully capture the age-related 
inflammation to a certain extent. These six markers were also identified to be the main 
discriminant factors of the variability observed in the PCA. Not surprisingly, IL-6 belongs to 
this group, consistent with the large body of evidence that implicates IL-6 in age-related 
immune dysregulation and poor vaccine responsiveness (Frasca and Blomberg, 2016). 
Contributions by neopterin and YKL-40 are an interesting result given that both have been 
successfully used as predictive markers of long term outcomes for inflammatory-related events 
or conditions in the elderly (Larsen et al., 2017; Rathcke et al., 2010). The greatest contributor 
was IL-Ra, consistent with previous studies in which this protein was part of a molecular 
signature explaining 68% of the cytokine vaccine response variability (Huttner et al., 2019). 
Moreover, it has been shown in mice that levels of IL-Ra seem to be higher in aged mice, and 
that this increase relates to a greater susceptibility to infection after vaccination (McDonald et 
al., 2017). Although the PCA clustering by age (Figure 6) does not allow for proper 
discrimination between different age groups, the fact that IL-Ra, an anti-inflammatory 
molecule, contributes in the same direction as the other three above-mentioned pro-
inflammatory markers, suggests that the variability observed in the data is not just a measure 
of total inflammation but rather of the overall immune activation. 
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Given that the different machine learning algorithms do not perform equally when given the 
same data set, two predictive models were developed using different strategies. The first model 
was a logistic regression, an algorithm frequently used in the analysis of biomedical data 
(Gonzalez-Dias et al., 2020). The lasso penalty introduced in my model aimed at reducing the 
set of predictors used, and therefore increasing interpretability. However, this might have given 
some variables like age, a disproportionate weight on the calculation of the outcome, resulting 
in a modest 0.67 accuracy rate. The second model was developed using a SVM approach which 
relies more on the spatial geometry of the data rather than on its statistical probabilities as in 
the regression. Through this approach I was able to train a model with a 0.73 accuracy rate. 
Although my results seem to suggest that SMV outperforms the lasso logistic regression, it is 
important to remember that the data defining good and bad responders was randomly simulated 
given that the actual data was not available at the time. Significant changes in the accuracy 
obtained with both models were seen when altering how vaccine responsiveness was assigned 
(data not shown). This indicates that both models are highly sensitive to variation to the 
outcome variable, and that they must be validated with the real data. Nonetheless, these 
observations also suggest that improvement in the models’ accuracy can be expected once 
validated.  
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Overall, this proof-of-concept study demonstrates that it is possible to develop an 
inflammation-based model to predict vaccine responsiveness to the influenza vaccine in the 
elderly. To my knowledge, the selection of markers in this study has been the most 
comprehensive panel of exclusively circulating inflammatory biomarkers that has been used to 
program such a model, contrasting with previous studies mainly based on transcriptomic 
analysis (Kazmin et al., 2017; Kotliarov et al., 2020; Morrisette-Thomas et al., 2014; Nakaya 
et al., 2011).  Having a limited set of parameters increases the interpretability of the prediction 
models and allows the assessment of their particular contribution to the hyporesponsive 
phenotype. Rather than a personalised diagnostic tool, these prediction models should be able 
to define an average age range at which the age-related changes to the immune system might 
put at risk the quality of the response to vaccination. This will certainly have an impact in how 
vaccination strategies are designed, possibly pointing out at the pre-elderly as a more 
reasonable target of immunization health policies. 
 

 
 
The current SARS-CoV-2 pandemic has risen awareness about the need to better understand 
the differences between the adult and the elderly immune responses. The VITAL cohort is 
therefore a compelling opportunity to study the relation between inflammation, the ageing 
immune system, and the response against this virus and its vaccine. The SARS-CoV-2 infection 
is characterized by a highly inflammatory response, with non-survivors displaying a state 
termed “stuck in innate immunity” (Bajaj et al., 2021), which has been shown to be more 
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prevalent in the elderly, and which is defined by excessive production of  IFN-a and -γ, CCL2, 
CXCL10, and other IFN-stimulated genes. Given the role of inflammation in the immune 
response against this virus, I speculate that a SARS-CoV-2-specific prediction model could be 
developed following the same approach used here for the influenza vaccine. However, training 
the algorithm requires the definition of good and poor responders, which in the case of SARS-
CoV-2 remains poorly defined. The spectral cytometry panel designed in this study was shown 
to be an excellent tool to measure multiple phenotypic and function characteristics of human 
PBMCs from a single sample, a significant improvement from traditional flow cytometry in 
which the number of parameters that can be simultaneously stained is more limited.  I also 
showed that ConA is an appropriate stimulant to be used as a positive control for production 
of T cell-derived cytokines.  This cytometry panel should  be compatible  as well with the 
protocol recently presented by Konstantin Föhse et al. (2021) in which the authors show that T 
cell-derived IFN-γ, TNF-a, and IL-1β production is decreased in cells from vaccinated subjects 
as compared to those from convalescent patients.  
 

 
 

6. Future perspectives: 
 
The next step towards the improvement of the prediction models developed in this study will 
be to validate or to re-train them using the results from the HAI antibody titre fold change from 
the VITAL cohort participants instead of the simulated data. This will significantly reduce any 
potential bias that might have been introduced in the models during the simulations. As with 
any classification model based on machine learning algorithms, it is possible that optimization 
of some parameters could have led to model overfitting. Therefore, it will be particularly 
important to validate the models here developed with other clinical cohorts for which the same 
parameters were measured.  
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Improvement of the models’ accuracy can be further achieved by including other immune 
parameters known to affect the response to vaccination in addition to the inflammatory 
biomarkers here used. For instance, it would be interesting to introduce other variables such as 
the naïve/ effector memory ratios for CD8+ and CD4+ T cells (Pinti et al., 2016), the abundance 
of circulating CD19+CD27-IgD- B cells (Frasca et al., 2017), the subjects’ CMV serostatus 
(Aiello et al., 2019), or the gut microbiome diversity (Cianci et al., 2020). It is foreseen that 
some of this data will become available from other research groups that are part of the VITAL 
consortium. Inclusion of these criteria will not only increase the model’s accuracy, but it will 
help understand how inflammaging is connected to other immune-related changes in the 
elderly. Likewise, assessment and inclusion of the subjects’ frailty will give us the opportunity 
to dissect some of the differences between healthy and pathological ageing, and how these 
differences affect the response to immunization.  
 
If validation with the real data shows that it is indeed possible to accurately predict vaccine 
responsiveness based on baseline parameters, it would be reasonable to think that by modifying 
the baseline inflammation we will be able to reshape the response to immunization (Tsang et 
al., 2020). The prediction models developed in this study have therefore the potential to be used 
as tools to measure how different immunomodulatory therapeutics can alter the immune 
homeostasis prior to vaccination, and how these changes will later impact the quality of the 
response. This combined therapy is a very promising approach, particularly in the elderly, as it 
stands as an alternative to overcome the hyporesponsiveness in this age group. 
 
Finally, the response to immunisation is vaccine-specific and, therefore, it is expected that the 
levels of baseline inflammation will have different effects on such response. With the spectral 
cytometry panel designed in this study it will be possible to characterize how different effector 
and memory lymphocytes react to the SARS-CoV-2 peptides after infection or vaccination. To 
assess this experimentally it will be necessary to incubate human PBMC with multiple peptides 
spanning across the sequence of the viral Spike protein. Using the spectral cytometry panel will 
make evident how the immune response to the virus differs between naïve, convalescent, and 
immunized subjects. Similarly, it will be possible to assess the differences between young and 
elderly individuals, and to determine the impact that baseline inflammation has on the immune 
response. 
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background of the research  
j. The discussion is pleasant to read, but lacks some essential 

points or is not always clear  

k.  Easily readable text with a largely logical structure 
l. Occasional grammatical errors 
m.  Tables, figures and graphs can be clearer and better 

integrated (more info ...) 
n. Good use of references 
o. Solid summary 

10-12  
pass 

a. The subject is situated within the broader scientific context to a 
limited extent; the literature is barely interpreted by the student 

b. The cited research is not entirely relevant or recent 
c. The structure of the introduction demonstrates limited insight into 

the topic 
d. The objectives are unclear/incomplete 

e. The applied methods are 
present but not clearly defined 

f. The limitations of the method 
are not discussed 

g. The results obtained are insufficiently processed and 
analysed 

h. The results are presented incorrectly in part 
i. The discussion demonstrates very limited insight into the 

background of the research  
j. The discussion is difficult to read and misses essential points 

or is not clear 

k. Text is acceptable, but not easily readable and has no 
clear structure 

l. Multiple grammatical errors 
m. Tables, figures and graphs can be clearer and are not 

well integrated into the text 
n. Limited use of references 
o. Summary does not accurately reflect the structure 

and conclusions of the research 
<10 
fail 
mark 

a. The topic is incorrectly situated within the broader scientific 
context; the literature is not interpreted by the student 

b. The cited research is not relevant  
c. The structure of the introduction demonstrates very limited insight 

into the topic 
d. The objectives are not reflected accurately 

e. The applied methods are not 
presented correctly or they are 
missing 

f. The limitations of the method 
are discussed incorrectly 

g. The found data are not processed and analysed, or they are 
processed and analysed incorrectly 

h. The results are presented incorrectly 
i. The discussion demonstrates incorrect insight into the 

background of the research  
j. The discussion is very difficult to read and misses essential 

points or is not clear 

k. Very unclear text 
l. Frequent grammatical errors 
m. Tables and figures and graphs are unclear or incorrect 
n. Incorrect use of references 
o. Summary is unclear or absent 


